Отправьте вопрос по ремонту холодильного оборудования

 














Наши телефоны: 8917-342 69 37, +7(347)228 67 70, e-mail: novotek-1@mail.ru

Полезные статьи: Полугерметичные поршневые и винтовые компрессоры "Битцер" для каскадных холодильных установок на СО2

Устранение неисправностей

Элементы холодильного агрегата

Отклонения в работе системы регулирования уровня и возврата масла

Отклонения в работе двигателя компрессора Copeland

Основные отклонения в работе поршневого компрессора

Принцип работы холодильной машины


Автор предлагаемой статьи г-н Герман Ренц является руководителем научно-исследовательского отделения компании "Битцер".Мы надеемся, что эта статья будет особенно интересна специалистам солидных холодильных компаний, которые сейчас с интересом присматриваются к углекислоте CO2, видя в ней перспективный хладагент для будущих установок.

ОСНОВНАЯ ИДЕЯ СТАТЬИ

Благодаря благоприятным для окружающей среды характеристикам, низкой токсичности и привлекательным физико-химическим свойствам в случае "докритического" функционирования углекислота (CO2) всё более интересует разработчиков как предпочтительный хладоноситель для вторичного контура, а также как хладагент для низкотемпературных каскадных систем При обычном низкотемпературном применении видна особенно высокая удельная холодопроизводительность CO2. в сравнении с другими хладагентами. Применение углекислоты позволит значительно снизить стоимость холодильной установки, за счёт экономии на компрессоре, трубопроводах и арматуре. Даже с учётом того, что каскадные системы обладают большой производительностью, применение CO2 позволяет использовать в них компрессоры, рассчитанные на коммерческое или на малое индустриальное применение. Однако, высокие рабочие давления определяют особые требования к конструкции компрессора и к системам предохранения. В настоящей статье приведены схемные решения реальных холодильных установок с CO2, а также подробно рассмотрены основные направления разработки специальной компрессорной техники и холодильных масел для CO2. Кроме того, изложены меры эксплуатационной безопасности установок на CO2, а также их характеристики производительности по сравнению с обычными установками.

ВВЕДЕНИЕ

После многолетнего периода довольно скромного интереса к CO2 у разработчиков холодильной техники углекислота в последние годы привлекает к себе особое внимание, прежде всего, из-за обострившихся экологических проблем. Наряду с разработками проектов с "транскритическими" условиями функционирования в последние годы были успешно введены в эксплуатацию многие "докритические" каскадные системы для коммерческого и промышленного низкотемпературного охлаждения с температурами испарения ниже -50 oC. Следует иметь в виду, что CO2 по сравнению с другими хладагентами обладает более благоприятными термо-физическими свойствами для данного диапазона температур. Углекислота также является химически инертным, пожаро- и взрывобезопасным веществом, но вредным для здоровья человека в больших концентрациях.

Все эти свойства определяют во многих случаях явное преимущество CO2 над аммиаком.

До сих пор в составе холодильных систем с CO2 использовались поршневые и винтовые компрессоры открытого типа. Однако, высокий уровень рабочих давлений налагает особые требования и, тем самым, удорожает конструкцию такого компрессора. В связи с этим в последнее время возрос интерес к полугерметичным компрессорам, аналогичным устанавливаемым в серийно-выпускаемые холодильные агрегаты, применение которых позволило бы значительно удешевить перспективные установки. На сегодняшний день уже реализовано много проектов с полугерметичными опытными прототипами. В последующих разделах статьи описан накопленный опыт по созданию надёжных специализированных для CO2 компрессоров, а также систем предохранения для них.

КАСКАДНЫЕ СИСТЕМЫ С CO2

На рис. 1 показана упрощённая схема холодильной установки, в которой CO2 сжижается в испарителе первичного холодильного контура (с хладагентами NH3, HC (пропан, пропилен) или HCFC/HFC) и транспортируется циркуляционной помпой прямо в испарители системы среднетемпературного охлаждения. В современных каскадных CO2- ступенях предусмотрен дополнительный LT- ресивер низкого давления, которое поддерживается на уровне давления испарения CO2 за счёт откачки паров одним или несколькими одноступенчатыми компрессорами. Компрессор нагнетает пары CO2 в каскадный охладитель (конденсатор) вместе с газом из среднетемпературного испарителя. В охладителе суммарный газовый поток конденсируется и затем поступает в соответствующий МТ- ресивер. Из него происходит перепуск жидкости в ресивер низкого давления с помощью поплавкового клапана.

Циркуляционные насосы или системы гравитационной циркуляции используются для подачи CO2 к месту его охлаждения фреоновыми системами. Для систем только с одним или несколькими испарителями холодильная установка может быть скомпонована как LPR-система, описанная в статье Ф. Персона /1/. Для исключительно низкотемпературного охлаждения компоненты среднетемпературного контура не используются.

Рис.1 Каскадная система с CO2 (упрощённая схема)

Рис.1 Каскадная система с CO2 (упрощённая схема)

На Рис.2 показана упрощённая схема двухкаскадной системы, в которой СО2 используется в качестве обычного хладагента второго каскада. Установки с такой схемой очень распространены в странах Скандинавии и считаются очень перспективными для коммерческого применения. В холодильных системах для типовых супермаркетов во втором низкотемпературном каскаде СО2 нагнетается в конденсатор-теплообменик поршневыми компрессорами "Битцер" серии Октагон: С-1К, С-2К, модифицированными для СО2.

ТРЕБОВАНИЯ К КОМПРЕССОРУ В КАСКАДЕ С CO2

CO2 обретает свойства жидкости при достижении сравнительно высокого уровня давлений при довольно низких температурах испарения и конденсации. Эти давления в некоторых случаях значительно превышают допустимые рабочие значения для типовых стандартных компрессоров (Рис. 3). При сравнении рабочего режима установки с R22, с температурой испарения -35 oC (SST) и температурой конденсации -10 oC (SCT) для CO2 это соответствует"+30 oC / +64 oC". Такие рабочие условия в реальных установках встречаются весьма не часто. Несмотря на низкую плотность паров CO2 по сравнении с галогенсодержащими хладагентами (Fig. 4) такие термо-физические свойства выражаются в бдолее высокой механической нагрузке на привод компрессора, а следовательно, в необходимости определённого роста требуемого приводного момента. Более того, при проектировании оборудования следует рассматривать даже ещё более экстремальные условия нагружения. Другой критический фактор связан со смазкой компрессора. При довольно высоком давлении всасывания некоторые холодильные масла растворяют в себе значительный процент CO2. В результате чего, кинематическая вязкость образовавшейся смеси значительно снижена.

Рис. 3 CO2/R22 - Сравнение значений давлений испарения и конденсации в пределах стандартной области функционирования

Рис. 4 CO2/R22 - Сравнение значений плотности паров в пределахстандартных диапазонов давлений всасывания

При применении полугерметиков следует также учитывать совместимость материала изоляции обмоток и смеси масла с CO2.Охлаждение электромотора - это другой важный аспект. На сегодня он является особенно спорным и вызывающим много сомнений из-за того, что от мотора с небольшими размерами требуется высокий приводной момент. С учётом особых свойств CO2, указанных выше становится ясно, что стандартные полугерметичные компрессоры могут использоваться только в очень ограниченной области применения.Последние достижения фирмы "Битцер" в этом направлении показывают, что при комбинировании различных компонентов одного семейства компрессоров, а также при соответствующей модификации конструкции и применении подходящего масла все категорические требования могут быть выполнены.

НАПРАВЛЕНИЯ РАЗРАБОТКИ / ОСОБЕННОСТИ КОНСТРУКЦИИ

Нагрузки и давления

Современные полугерметичные компрессоры проектируются с пятикратным запасом прочности по внутреннему давлению, и это должно подтверждаться при проведении регулярных проверок. Даже с учётом наличия внутреннего предохранительного клапана давления, типом внешних предохранительных клапанов, а также с учётом индивидуальных испытаний согласно соответствующим предписаниям ЕС обычные границы применения (HP -высокое давление 28 бар/ LP -низкое давление 19 бар) могут быть приподняты ещё выше. При необходимости, рекомендуется применять прокладки с металлическим усилением или поддерживающие элементы в уплотнениях.Применение чугуна со сферической графитной структурой вместо серого чугуна для литья корпусных деталей позволяет повысить их механическую прочность при той же толщине стенок.

Механическая нагрузка / Необходимый приводной момент

Сравнивая максимальные рабочие условия компрессоров по диаграмме на Рис.3, мы видим, что давления испарения и конденсации CO2 превышают примерно на 60 % и 20 % соответственно нормальные максимальные значения рабочих давлений для R22.Самый простой путь приспособления компрессора для работы на CO2 - это комбинирование в одном типовом корпусе определённой серии компрессоров самой малой объёмной производительности с самой большой мощностью мотора. Для поршневого компрессора это означает использование самого малого диаметра поршней, что приведёт в результате к снижению нагрузки на подшипники и уменьшению изгибающего усилия на каленвал. Это также относится и для подшипников пальцев шатунов, которые также воспринимают значительные нагрузки. В малых поршневых компрессорах пальцы, как правило, скользят непосредственно в соединяемых деталях, но с учётом специфических нагрузок при работе на CO2 необходимо на пальцы устанавливать дополнительные подшипники скольжения. В связи с более высоким секундным массовым расходом конструкция клапанов компрессора также должна быть модифицирована. В случае применения винтовых компрессоров возможно применение коротких роторов, а также, в зависимости от объёмной производительности, больших подшипников. Потому что в каскадных системах при обычных условиях функционирования на низких соотношениях рабочих давлений реализация данной концепции не приводит к снижению эффективности (к.п.д.).

Рис. 5 Разрез полугерметичного поршневого компрессора



Рис. 6 Разрез полугерметичного винтового компрессора (без маслоотделителя)

С целью предохранить компрессор от чрезмерных механических нагрузок на самых тяжёлых режимах, а также мотор от перегрузок на линию всасывания, непосредственно на входе в компрессор, устанавливают регулятор давления в картере. Его настраивают таким образом, чтобы после пуска компрессора давление всасывания стабилизировалось ниже допустимого максимума.

Охлаждение мотора

Ввиду высокой удельной нагрузки на мотор в сочетании с его малым объёмом, воздушное охлаждение во многих случаях оказывается неудовлетворительным из-за недостаточной площади наружной поверхности моторной части корпуса компрессора. Выбор только такого способа охлаждения потребовал бы разработки специальной конструкции компрессора для CO2 и, тем самым, существенно снизил бы преимущество от использования стандартных узлов, производимых серийно.

Широко используемое в полугерметичных компрессорах охлаждение всасываемым газом сулит в этом отношении большие выгоды. Но при низкотемпературном охлаждении, а также при использовании хладагентов, имеющих низкую удельную энтальпию паров такой способ охлаждения также неэффективен, так как при этом появляется дополнительный перегрев газа при протекании через мотор, в результате чего изменяется удельный объём (плотность) газа и снижается его секундный массовый расход.

При более подробном рассмотрении этого вопроса обнаруживается, что потери от охлаждения всасываемым газом довольно низкие в допустимой области функционирования. Причинами тому являются высокий массовый расход CO2 и низкий перегрев газа на всасывании при использовании затопленных испарителей. Это обеспечивает особенно интенсивное охлаждение мотора и гарантирует низкую температуру обмоток, что определяет минимальные тепловые потери и высокую эффективность мотора.

Рис. 7 Диаграмма изменения величины массового расхода CO2 (%) в зависимости от значения перегрева всасываемого газа в моторе (SH, К) при различных температурах испарения (SST, оС)

Каждая из обмоток мотора оснащается соединёнными с электронным защитным устройством PTC-датчиками температуры, обеспечивающими надёжную защиту от перегрузок. При наличии достаточного охлаждения мотор может работать при очень высоких нагрузках длительное время.

Смазка

Довольно высокие механические нагрузки и высокая растворимость газа в применяемых холодильных маслах определяют особые требования к вязкостным и трибологическим свойствам масла для CO2 , а также к конструкции компрессора. В то же время, для надёжного возврата масла из системы масла должны иметь хорошую смешиваемость с CO2 даже при температурах - 50 oC и ниже.

Полиалкилен-гликолевые (PAG) масла показывают желаемую низкую растворимость в себе CO2 в картере компрессора, а также в маслоотделителе, обеспечивая при этом необходимую толщину слоя смазки с благоприятными вязкостными характеристиками. С другой стороны в результате неудовлетворительной смешиваемости с CO2 наблюдаются известные трудности с циркуляцией масла по системе. Кроме того, очень высокая гигроскопичность PAG-масел может привести к резкому снижению их диэлектрических свойств, а также к повышению потенциала их химической активности. Таким образом, применение этих масел в полугерметичных компрессорах на CO2 не рекомендуется.

Тем временем, разносторонние научные исследования, а также практический опыт, показали, что специально модифицированные полиэфирные масла (Polar-POE) являются вполне пригодными для использования в компрессорах специального исполнения, функционирующих в вышеуказанных условиях. Эти масла обладают высоким индексом вязкости, хорошими смазочными характеристиками, приемлемой растворимостью в себе CO2, а также, в отличие от PAG-масел и неполярных минеральных масел, хорошо смешиваются с CO2 /2/. Однако, с учётом их гигроскопичности необходимо применять очень большой и мелкоячеистый ("молекулярное сито") фильтр-осушитель.

Несмотря на то, что полученные результаты исследований в целом пока вполне удовлетворительные, анализ состояния роликовых подшипников качения и подшипников скольжения показывает довольно часто встречающееся забивание поверхностей трения при удовлетворительной вязкости смеси масла и CO2. Одной из основных причин этого является образование значительной доли газовой фазы в смеси при испарении углекислоты в случаях резкого падения давления и тепловыделения. Из всего сказанного следует, что необходимы дальнейшие шаги, как в поисках пригодных масел, так и в разработках конструкций компрессоров.

Рис. 8 Растворимость CO2 в POE-маслах и получаемая кинематическая вязкость смеси(по материалам DEA)



Рис. 9 Границы смешиваемости CO2 с POE-маслами и PAG-маслом при докритических температурных условиях (по материалам DEA)

 






















Copyright © Новотэк-1 2006-2010

Создание и раскрутка сайтов в Уфе - UfaPR.ru
 холодильное оборудование УфаОрганизация праздников в Уфе
Руководитель интернет-проекта Дмитриев Дмитрий